


## Multi-frame Depth in Dynamic Areas

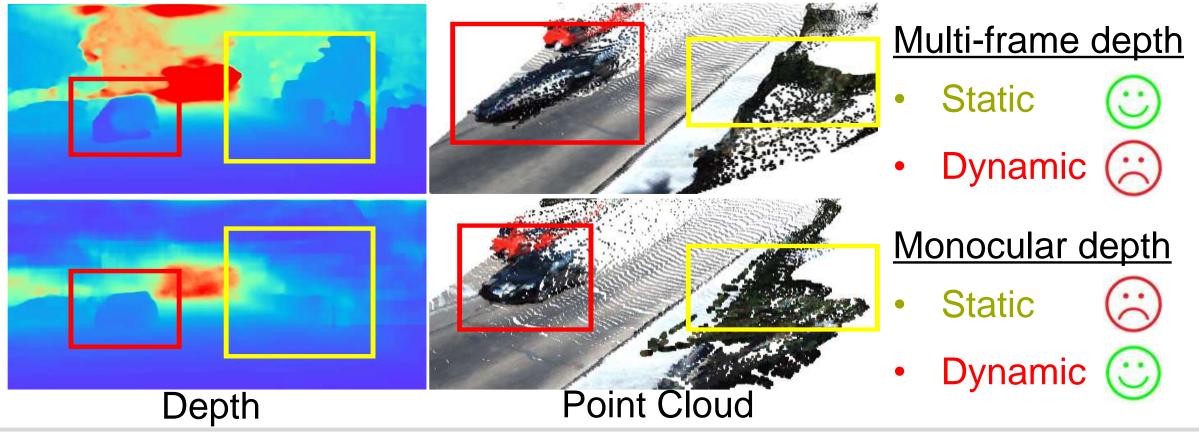
**Problem Statement**: Multi-frame depth estimation encounters severe corruption in dynamic areas, due to the violation of multi-view consistency.



Inputs with dynamic area

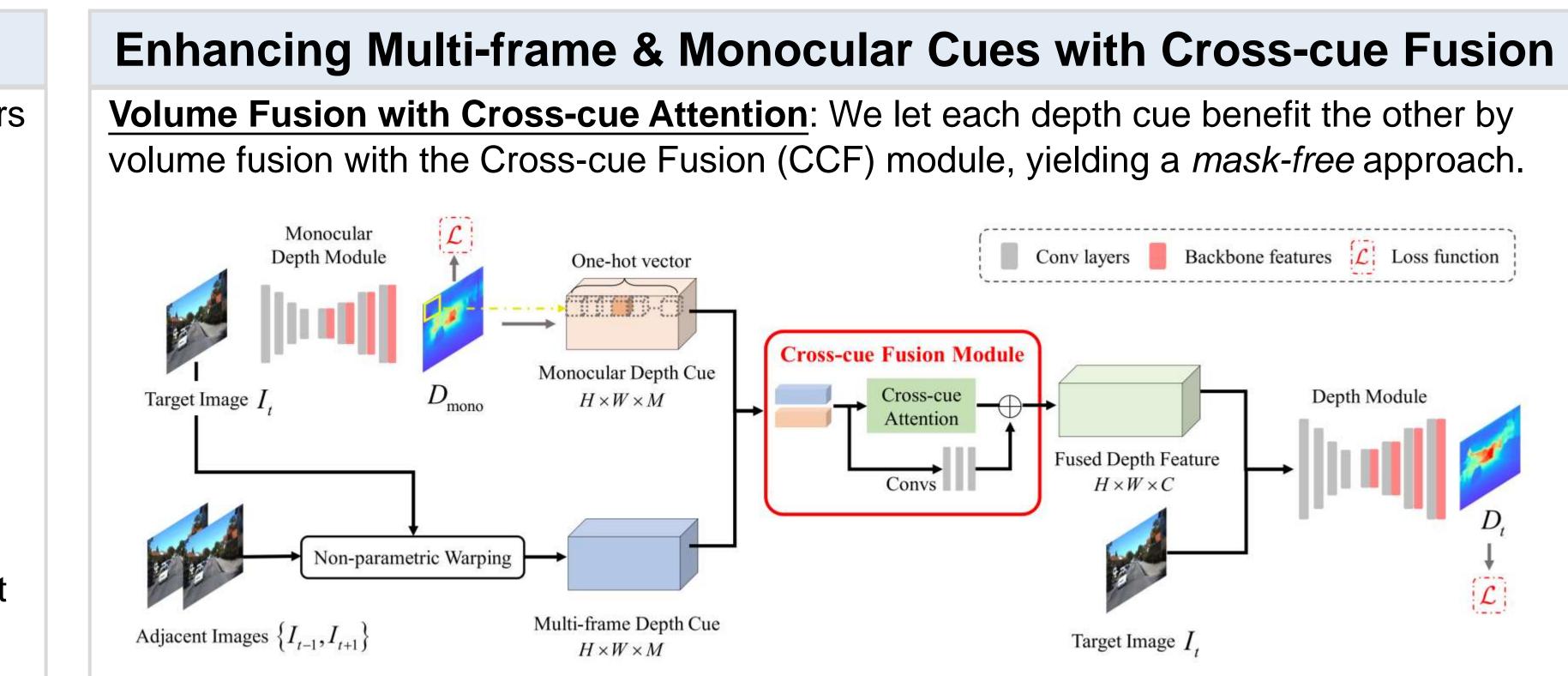


Depth map showing large dynamic error

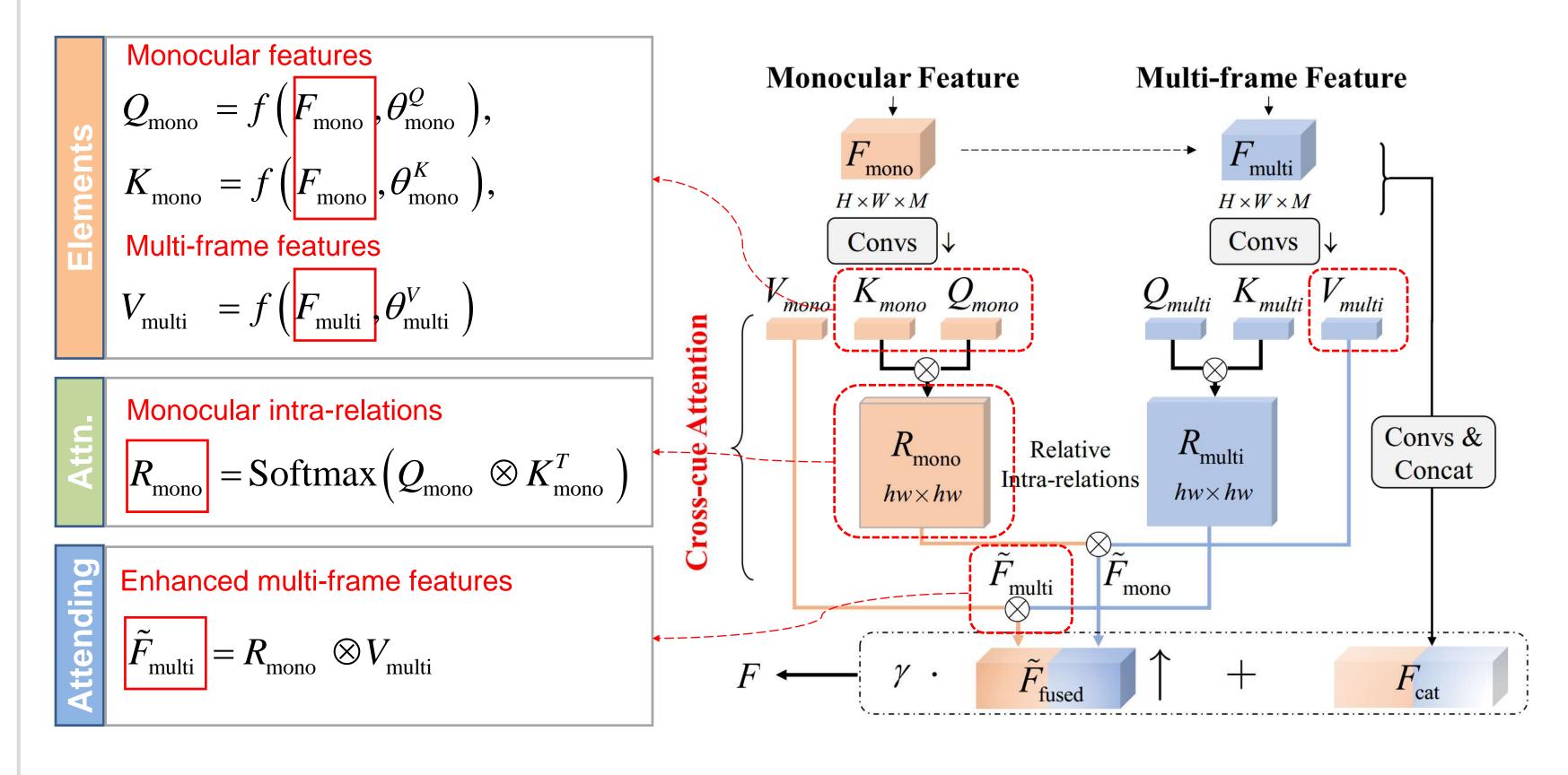

**Existing Methods**: Segment the dynamic areas, supplement the dynamic multi-frame cue with the monocular depth cue.

### Limitations:

- Dynamic area segmentation is challenging, with additional computation overhead;
- The single dependency of monocular cues limits the dynamic depth performance.

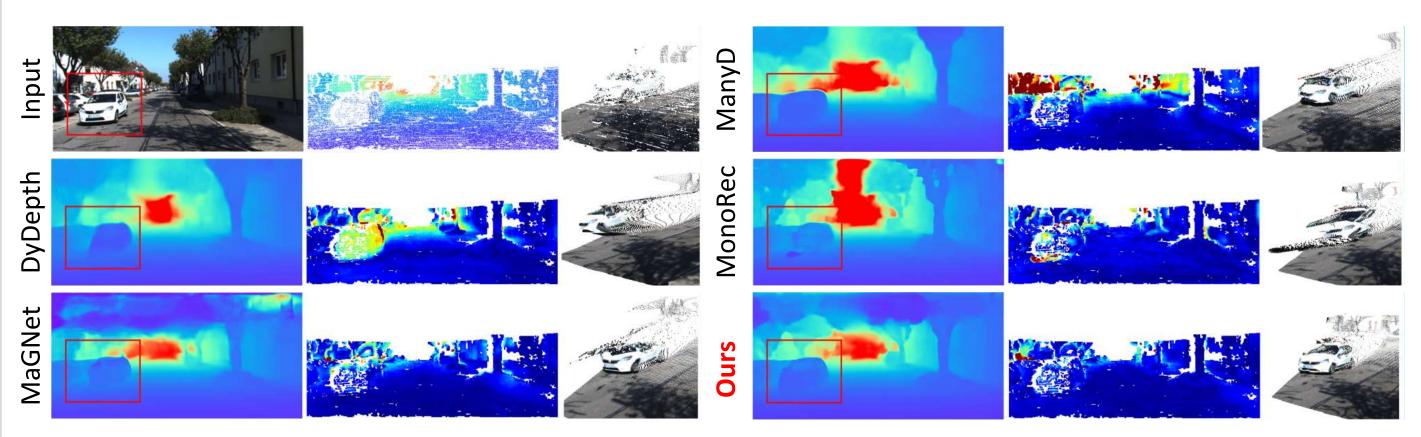

# Mutual Benefits of Two Depth Cues

We aim to propagate the multi-frame static (yellow box) depth to the monocular cues and let monocular cues in dynamic areas (red box) enhance the multi-frame representations, yielding the final dynamic depth *excelling* each depth cue.




# Learning to Fuse Monocular and Multi-view Cues for Multi-frame **Depth Estimation in Dynamic Scenes**

Rui Li<sup>1</sup>, Dong Gong<sup>2</sup>, Wei Yin<sup>3</sup>, Hao Chen<sup>4</sup>, Yu Zhu<sup>1</sup>, Kaixuan Wang<sup>3</sup>, Xiaozhi Chen<sup>3</sup>, Jinqiu Sun<sup>1</sup>, Yanning Zhang<sup>1</sup> <sup>1</sup>Northwestern Polytechnical University, <sup>2</sup>The University of New South Wales, <sup>3</sup>DJI, <sup>4</sup>Zhejiang University




**Cross-cue Attention**: We generate *query*, *key* features from one depth cue to compute its relative intra-relations, then use it to enhance the *value* feature from the other depth cue. Take the multi-frame feature enhancing process as an example:



| Experiments                                                 |                  |         |       |      |         |        |        |                     |                 |                   |                 |  |
|-------------------------------------------------------------|------------------|---------|-------|------|---------|--------|--------|---------------------|-----------------|-------------------|-----------------|--|
| <b>(ITTI:</b> Evaluation of overall & dynamic depth errors. |                  |         |       |      |         |        |        |                     |                 |                   |                 |  |
| Eval                                                        | Method           | Back.   | Reso. | Sup. | Abs Rel | Sq Rel | RMSE   | RMSE <sub>log</sub> | $\delta < 1.25$ | $\delta < 1.25^2$ | $\delta < 1.25$ |  |
|                                                             | Manydepth [36]   | Res-18  | MR    | М    | 0.071   | 0.343  | 3.184  | 0.108               | 0.945           | 0.991             | 0.998           |  |
|                                                             | DynamicDepth [9] | Res-18  | MR    | M    | 0.068   | 0.296  | 3.067  | 0.106               | 0.945           | 0.991             | 0.998           |  |
|                                                             | MonoRec [37]     | Res-18  | MR    | D*   | 0.050   | 0.290  | 2.266  | 0.082               | 0.972           | 0.991             | 0.996           |  |
| srall                                                       | Ours             | Res-18  | MR    | D    | 0.043   | 0.151  | 2.113  | 0.073               | 0.975           | 0.996             | 0.999           |  |
| Overall                                                     | MaGNet [1]       | Effi-B5 | MR    | D    | 0.057   | 0.215  | 2.597  | 0.088               | 0.967           | 0.996             | 0.999           |  |
|                                                             | Ours             | Effi-B5 | MR    | D    | 0.046   | 0.155  | 2.112  | 0.076               | 0.973           | 0.996             | 0.999           |  |
| 1                                                           | MaGNet [1]       | Effi-B5 | HR    | D    | 0.043   | 0.135  | 2.047  | 0.082               | 0.981           | 0.997             | 0.999           |  |
|                                                             | Ours             | Effi-B5 | HR    | D    | 0.039   | 0.103  | 1.718  | 0.067               | 0.981           | 0.997             | 0.999           |  |
|                                                             | Manydepth [36]   | Res-18  | MR    | M    | 0.222   | 3.390  | 7.921  | 0.237               | 0.676           | 0.902             | 0.964           |  |
|                                                             | DynamicDepth [9] | Res-18  | MR    | M    | 0.208   | 2.757  | 7.362  | 0.227               | 0.682           | 0.911             | 0.971           |  |
| Dynamic                                                     | MonoRec [37]     | Res-18  | MR    | D*   | 0.360   | 9.083  | 10.963 | 0.346               | 0.590           | 0.882             | 0.780           |  |
|                                                             | Ours             | Res-18  | MR    | D    | 0.118   | 0.835  | 4.297  | 0.146               | 0.871           | 0.975             | 0.990           |  |
|                                                             | MaGNet [1]       | Effi-B5 | MR    | D    | 0.141   | 1.219  | 4.877  | 0.168               | 0.830           | 0.955             | 0.986           |  |
|                                                             | Ours             | Effi-B5 | MR    | D    | 0.111   | 0.768  | 4.117  | 0.135               | 0.881           | 0.980             | 0.994           |  |
|                                                             | MaGNet [1]       | Effi-B5 | HR    | D    | 0.140   | 1.060  | 4.581  | 0.202               | 0.834           | 0.954             | 0.982           |  |
|                                                             | Ours             | Effi-B5 | HR    | D    | 0.112   | 0.830  | 4.101  | 0.137               | 0.885           | 0.978             | 0.992           |  |

#### From left to right: depth map, error map, and reconstructed point cloud.



### **Dynamic error reduction over monocular branch:**

Our method achieves significant dynamic error reduction over the monocular depth branch.

| Method               | Mono. Err. | Final Err. | Err. Redu. |  |
|----------------------|------------|------------|------------|--|
| Manydepth [36]       | 0.212      | 0.222      | -4.72%     |  |
| Dynamicdepth [9]     | 0.214      | 0.208      | 2.83%      |  |
| MaGNet [1]           | 0.153      | 0.141      | 7.84%      |  |
| <b>Ours</b> - Res.18 | 0.149      | 0.118      | 20.81%     |  |
| <b>Ours</b> - Res.50 | 0.145      | 0.116      | 20.00%     |  |





Find the code and models here!